Improvement of Spatial Resolution for Nonlinear Raman Microscopy by Spatial Light Modulation.

نویسندگان

  • Motohiro Banno
  • Konosuke Onda
  • Hiroharu Yui
چکیده

The development of a stimulated Raman scattering (SRS) microscope with a wavefront modulation unit is presented. In the apparatus, two beams for introducing the SRS process were focused into the sample with an objective lens. In the pathway of the Stokes beam, which is one of the two incident beams, a spatial light modulator (SLM) was located. Using the SLM, the wavefront of the Stokes beam was modulated to make the shape of the focal point a concentric circular pattern. By this spot shaping technique, the area where the SRS signal generates is restricted. The instrument response function (IRF) of the SRS microscope was examined by measuring the SRS intensity while scanning the sample position. From the result, the width of the IRF was reduced by about 15% by the wavefront modulation. It is suggested that the introduction of SLM is a way to improve the IRF of vibrational spectroscopic microscopes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of the Spatial Resolution of MR-Based Polymer Gel Dosimetry versus Film Densitometry using Dose Modulation Transfer Function

Introduction: The conventional methods of dosimetry are not capable of dosimetry in such a small volume of less than one cubic millimeter. Although the polymer gel dosimetry method based on magnetic resonance imaging (MRI) could achieve three dimensional dosimetry with high resolution, a spatial resolution evaluation based on gel dose modulation transfer function has not been investigated yet. ...

متن کامل

Optical imaging with nanoscale resolution using optical nonlinearities and spatiotemporal modulation

We suggest a type of imaging technique that uses optical nonlinearities and spatiotemporal modulation to achieve nanoscale resolution in the far field. The technique utilizes intense laser beams to produce an optical excitation with spatial features that are much smaller than the wavelength of light. Nonlinear mixing with the excitation can then be used to imprint the information contained in h...

متن کامل

Structured line illumination Raman microscopy

In the last couple of decades, the spatial resolution in optical microscopy has increased to unprecedented levels by exploiting the fluorescence properties of the probe. At about the same time, Raman imaging techniques have emerged as a way to image inherent chemical information in a sample without using fluorescent probes. However, in many applications, the achievable resolution is limited to ...

متن کامل

Effects of Digital Elevation Models (DEM) Spatial Resolution on Hydrological Simulation

Digital Elevation Model is one of the most important data for watershed modeling whit hydrological models that it has a significant impact on hydrological processes simulation. Several studies by the Soil and Water Assessment Tool (SWAT) as useful Tool have indicated that the simulation results of this model is very sensitive to the quality of topographic data. The aim of this study is evaluati...

متن کامل

SAX microscopy with fluorescent nanodiamond probes for high-resolution fluorescence imaging

We report the use of fluorescent nanodiamonds (FNDs) as a photostable fluorescent probe for high resolution saturated excitation (SAX) microscopy. We confirmed that FNDs show a nonlinear fluorescence response under saturated excitation conditions generated by intense excitation light. Using FNDs, we quantified the spatial resolution improvement inherent in SAX microscopy, and experimentally dem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical sciences : the international journal of the Japan Society for Analytical Chemistry

دوره 33 1  شماره 

صفحات  -

تاریخ انتشار 2017